
1

ICT286
Web and Mobile Computing

Topic 3
Introduction to
JavaScript Core

2

Objectives
• Understand JavaScript’s execution environment and the difference between web

browser execution environment and Node.js execution environment.
• Be able to use console object to display output and error messages, and be able

to obtain keyboard input using readline-sync in Node.
• Understand and be able to declare and use variables and understand that

declarations are hoisted.
• Understand and be able to use the five primitive types and the associated

operators, and understand how the type of a variable is determined, and how
JavaScript implicitly convert values from one type to the other and know how to
explicitly convert the the type of a variable.

• Understand and be able to define new objects using object literals and use these
objects.

• Understand and be able to create new objects using new and existing object
constructors, such as Date and Array.

• Understand and be able to declare and use functions.
• Understand and be able to use regular expressions.
• Be able to test and run JavaScript code using Node.js.

History of JavaScript
• Originally developed by Netscape and was called

LiveScript
• Joint development with Sun Microsystems in 1995 and

changed its name to JavaScript
• Become Standard 262 (ECMA-262) of the European

Computer Manufacturers Association in 1997.
• The official name of the language is ECMAScript
• The latest edition is ECMA-262 10th edition published in

June 2019.
• Supported by nearly all browsers
• It is now also used on the server side (eg, Node.js) and

or desktop (eg, Electron)
3

4

JavaScript as Client-side
Technology

• JavaScript is commonly used as a client-side
technology

• The JavaScript code is downloaded to the web client (ie, web
browser) and executed by the client. This frees up the resources
on the server, and also provides some dynamics to the web page.

• The web client has full access to the original JavaScript source
code - this means that users have the ability to read the original
code.

• (Client-side) JavaScript cannot do direct manipulation of
resources on the server-side (eg. access to data in a central
database).

• JavaScript is also increasingly used on the server-side,
eg., Node.js provides a run-time environment for
executing JavaScript code outside browsers.

5

JavaScript Execution
Environment

• JavaScript was originally designed for the web browser
environment. Now it is used in many other host
environments, such as Node.JS for server, Electron for
desktop.

• JavaScript defines a global object where the core language
build-ins and host-specific properties and methods are
defined.

• For different host environment, the name will be different.
• For example, in a web browser environment, this global

object is named Window, and its object reference is
window.

6

JavaScript Execution
Environment

• If Node.JS is the host environment, the object reference of
this global object is global.

• In this topic, we use JavaScript with Node.js as its host
environment.

• JavaScript has introduced a standard reference for the
global object: globalThis. However, this name is not yet
supported in Node.js version (v10.16.2).

• The global object contains the properties and methods
defined in JavaScript core, such as NaN, parseInt,
Object, Array, String, Math, RegExp, JSON, as well as
properties specific to Node.js.

7

JavaScript Execution
Environment

• Properties defined in object global are automatically
available everywhere in your scripts, with or without the
object reference.

• For example, method parseFloat is a JavaScript builtin.
Therefore it is a method of the object global. Normally we
must access it with its object reference, eg:

console.log(global.parseFloat(“3.14xradius”);

• Because properties and methods in global is available
everywhere, the method can be also be accessed without
the object reference, as in

console.log(parseFloat(“3.14xradius”);

8

Console Output
• Both web browser’s window object and Node.js’ global

object contain console object.
• The console object allows you to display program output,

error messages and other information.
• Most web browsers support debugging console. Eg, in

Google chrome browser, you can bring up the console by
clicking menu: View -> Developer -> JavaScript Console.

• The browser’s console allows JavaScript program to display
debugging messages.

• For Node.JS, this console is the terminal window in which
you run your JavaScript program. You can use the console
to display program output, error message and other
information.

9

User Input
• In a web browser environment, user input can be obtained

using the built-in methods prompt from the window object.
We will discuss window object in the next topic.

• For Node.JS, JavaScript program may obtain user input
from the terminal.

• There are a number of ways in Node.js to obtain user input.
The simplest one is readline-syn module.

• To use readline-sync module, you must download and
install it, which can be done with the following command
from the terminal:
npm install readline-sync

10

Storing Data in Variables
• In all programs, behaviours are defined by

storing data, and manipulating data, and
outputting data. The data are usually stored in
variables.

• A variable is basically a name for a memory
address where a value is stored. You can
change the value stored in that variable.

• You declare (create) a variable by using the var
keyword.

11

Variable Names
• There are rules for the names used for variables

in JavaScript:
• a name must begin with a letter, an underscore (_), or a

dollar sign followed by any sequence of letters, underscore,
digits and dollar signs.

• names cannot have spaces in them
• names are case-sensitive; which means that customer and

Customer are not the same variable
• names cannot be reserved words in the JavaScript

language; there is a list of all the reserved words in
JavaScript in Table 4.1 of the text (page 143).

• You should use meaningful (descriptive) names
for your variables.

12

Variable Declarations
• In JavaScript, there are two ways you can introduce new

variables:
– Explicit declarations: using var, with or without initialisation.

Example:
var x;

var y = 10;

– Implicit declarations: without using var, but always with an initial
value. Example:
radius = 5.4;

circumference = radius * 2 * 3.14;
When you initialised an undeclared variable, such as radius and circumference in the
above example, JavaScript automatically declared it.

• It is recommended that you always declare variables
explicitly.

13

Example Code with Variables

var x;

var y = 0;

var z = x + y;

x = z - 1;
y = 2 * 2;

var my_name = "John";

var my_other_name = "Jane";

14

Hoisting of Declarations
• An explicit declaration with initialisation such as

var x = 10;

can be seen as the combination of a declaration and an
assignment:

var x;

x = 10;

• It is important to note that JavaScript declarations (but
not the assignment), including variable declarations and
function declarations, are “hoisted”. The declarations are
treated by the JavaScript interpreter as if they are all
moved to the top of the current scope.

• Example:
console.log(x); // print undefined
var x = 10;

console.log(x); // print 10

15

Primitive Data Types
• In JavaScript each primitive value has a data

type. The following are JavaScript’s five primitive
data types:

• Number: a number
• String: a sequence of characters
• Boolean: only two values true or false
• Null: only one value null
• Undefined:

• Unlike C/C++ or Java, JavaScript variables do
not have a fixed type. Their types are
determined at the runtime, based on the values
the variables have at the time.

16

Variable Types
• In declaring a new variable, you do not need to

explicitly say what data type the variable is - it is
inferred from the value you give it during the
runtime.

• eg. 123 would be inferred as a numeric type (Number), while
"one" would be a string type (String).

• Therefore the type of the variable can change
during runtime.

• In the following example, variable x was initially of type
Number, but later it changes to String:
var x = 10;

x = “WWW”;

17

Use of Symbol Not Defined
• Any attempt to use a symbol that is neither

explicitly defined, nor implicitly defined, would
cause a runtime error: the symbol is not defined.

• Eg
console.log (x);

Executing the above code from Node.js would produce
a run-time error:

ReferenceError: x is not defined

18

Undefined Variable
• If a variable is explicitly declared, but not

initialised, its type is undefined, but its value is
the string “undefined”

• Eg.
var x;
console.log(x+”string”);
console.log(typeof x);

Executing the above code from Node.js would produce
the following output:

undefinedstring
undefined

19

Null Variable
• If a variable is assigned the value null, it means

it is not pointing to any object.
• However the variable’s type is Object.
• Eg.

var x = null;
console.log(x);
console.log(typeof x);

Executing the above code produces the following
output:

null
object

20

Numbers and Strings
• Number values are represented internally as double-

precision floating-point values
– Number literals can be either integer or float,
– Float values may have a decimal and/or an exponent
– Examples:

• Integers; 5, 100, 65;
• Decimals: 12.6, 0.77, .78, 21.;
• With exponent: 5e2, 5.678e3, 988.111e-2

• Strings are collections of characters
– The characters in the string must be enclosed in quotes (" "); for example

"Jane"
– They can be a number, if no arithmetic is to be performed on it; for

example "33"
– If you need a quotation mark inside a string, use ‘, or else place ‘\’ before

the quote; for example "Christine’s house" or "Lee said \"Come here\""

21

Special Literals
There are some special literals defined in
JavaScript that you may find useful:

• NaN: not a number
– var temp = 3*"cat"; will cause temp to contain

NaN
• undefined: a variable that has been declared , but

not initialised

• Infinity: results from division by zero (0)

Implicit Type Conversion
• JavaScript attempts to convert values in order to be

able to perform operations
• “August” + 2019 causes the number to be converted

to string and a concatenation to be performed
(operator “+” is treated as string concatenation).

• Similarly, in “2019” + 2008 and 2019 + “2008”, the
operator “+” is treated as string concatenation
operator, the numbers are converted into strings.

• However, in expression such as 7 * “3”, “7” - 3, “7” –
“3”, “7” * “3”, and “7” / “3”, these operators are
numerical operators, hence strings are converted into
numbers.

• However strings such as “7x” cannot be converted
into numbers. Eg, “7x” * 3 would result in NaN.

22

Implicit Type Conversion
• The value undefined is converted to NaN in a numeric

context
• The value 0 is interpreted as a Boolean false in a

Boolean context, all other numbers are interpreted as
a true

• The empty string is interpreted as a Boolean false in a
Boolean context, all other strings (including “0”!) as
true

• The values undefined, null and NaN are all interpreted
as false in a Boolean context

23

Explicit Type Conversion
• Explicit conversion of number string to number

using object Number. Eg:
console.log(Number(“303”) +10);

would print 313.

• parseInt and parseFloat convert the beginning of a
string. Eg:

Console.log(parseInt(“50South Stree”) + 10);

Console.log(parseFloat(“3.14=pi”) + 10);

would print 60 and 13.14 respectively.

24

25

Comments
• In JavaScript code, when the string // is

encountered, all characters after it in the same
line will be ignored by the interpreter.

• That is, it can be used for comments.

• Make use of comments in your code, so that you
can understand it and someone else (having to
fix or change your code) can too.

var email; //the email address typed in by the user

As far as the program is concerned, this section
might as well not exist. It is only useful for

humans reading it.

26

Operators
JavaScript has a set of operators which can be
used for

• testing, or
• manipulating variables

eg.
• >, <, <=, >=, ==, != : to test the relationship between two

numbers
• &&, || !: (logical AND) and (logical OR) and (logical NOT)
• + : add two numbers or concatenate two strings
• -, *, / : subtract, multiply and divide two numbers
• ++, -- : increase or decrease by 1
• +=, -=, *=, /= : add/subtract/multiply/divide, followed by

assign

27

Examples of use of
Operators

i++; (same as i = i+1;)

if (i<=20) ...

if ((i==20) && (Month!=12)) ...

total = (time * rate) + 100;

28

Control Statements
• JavaScript code exists in statements.
• A statement ends with a semi-colon.
• All simple statements, which are separated by

semi-colons, are executed from left to right,
and from top to bottom.

29

Statements
• We can perform more interesting behaviours

by using more interesting control statements.

• if…else

• for

• while

30

if…else
The if-statement is a conditional

• It allows us to define a decision - under this
condition, do this; under that condition, do that; etc.

Format:
if (condition) {

statements
} else {

statements
}

31

Example of if…else
var day_of_week;

// code here to get day_of_week

if (day_of_week == "Monday") {
console.log("Today is Monday");

} else {
console.log("Today is not Monday");

}

32

for loops
• Loops are for executing a section of code

repeatedly.

• The for loop controls how many times the
code is repeated by having a control variable.

• General format:
for (counter=starting value ;

counter <= ending value ;
counter++)

{
statements

}

33

Example of for loop

for (var count =0; count < 5; count++)
{

// repeated statements go here
console.log("The counter is " + count);

}

34

while loops
• Another more general form of loop is the while

loop. This is used when we do not know how
many times the statements inside the loop
should be executed.

• Format

while (condition)
{

statements
}

35

Example of while loop
var loop_count = 1;

while (loop_count < 4)
{

if (loop_count == 3) {
console.log("3 strikes – you’re out!");
loop_count = loop_count + 1;

} else { // some other code in here
loop_count = loop_count + 1;

}
}

36

Break and Continue
• The break statement can be used to get out of

the middle of a loop. Use break with care. Your
loops should normally be designed so that you
do not need to use a break command.

• continue is the complement of break and can be
used to take execution to the beginning of the for
or while loop ignoring any further commands in
the block.

Compare the two loops on the next slides.

37

// need to install readline-sync module in node.js:
// npm install readline-sync

var readline = require('readline-sync');

var answer;

var correct = false;

while (!correct)

{

answer = readline.question("What is your name?");

if (answer == "Hong")
correct = true;

}

Break Example (without
break)

38

// need to install readline-sync module in node.js:
// npm install readline-sync

var readline = require('readline-sync');
var answer = 0;
var i = 0;

for (i = 0; i < 10; i++)
{

answer = readline.question(“What’s your lucky
number?”);

if (answer == 7) {
break;

}
}

Break Example (with break)

39

Switch
• Sometimes using if-else statements can be

difficult because there are a lot of possibilities.
In this case a switch statement may be more
appropriate. The switch statement is like a case
in other languages.

• Make sure you understand the difference between
a switch statement and multiple nested if else
statements.

40

Example of Switch
var now = new Date(); // create a new date object;
var monthname;
var month=now.getMonth(); // a function returning

//the current month 0 ..11
switch (month) {

case 0 :
monthname="January";
break;

case 1 :
monthname="February";
break;

case 2 :
monthname="March";
break;

default :
monthname= "Invalid";

}

console.log("The current month is " + monthname);

41

Functions
• A function allows you to define a piece of code once and

uses it many times with different arguments.
• A function can have a list of parameters.
• You can define local variables within a function whose

scope is limited to the function.
• A function often returns a value.
• Example

function areaOfCircle (radius) {

var PI = 3.1415;

return PI*radius*rsadius;

}

console.log(”circle area is “ + areaOfCircle(5.4));

42

Functions
• As function declarations are hoisted, they can be invoked

before or after they are declared.
• Example

console.log(”circle area is “ + areaOfCircle(5.4));

function areaOfCircle (radius) {

var PI = 3.1415;

return PI*radius*radius;

}

• In the above example, the function areaOfCircle was
invoked in the console.log before it is declared.

• Due to “hoisting”, the function declaration is treated as if it
is declared at the top of the scope regardless where it is
actually declared.

43

Functions
• A function can also be declared and assigned to a

variable.
• Example

var areaOfCircle = function(radius) {

var PI = 3.1415;

return PI*radius*rsadius;

};

Notice the semicolon (in red color) at the end of the
function variable declaration.

• However, such a function can only be invoked after the
function is assigned to the variable.
var areaOfCircle = function(radius) { . . . };

console.log(”circle area is “ + areaOfCircle(5.4));

44

What is an Object?
• In the physical world, an object is a thing; for example a

cat, a car or a person.
• An object in the physical world has both a set of

properties and a set of behaviours.
• For example, a dog has a set of properties such as

breed, fur colour, age, and weight.
• A dog can eat, can run, can bark, etc. These are the

dog’s behaviours.
• In JavaScript, an object is a computer representation of

a real object in the physical world.

45

JavaScript Object
• A JavaScript object models both the physical

object’s properties, such as hair colour and age
of a dog, and its behaviours, such as dog
barking.

• The properties are represented by a set of data
stored in the JavaScript object (you may think of
them as a set of variables).

• The behaviours are represented by a set of
methods (or functions) defined in the JavaScript
object which can manipulate the data stored in
the object.

46

Types of JavaScript Objects
• JavaScript core built-in objects:

– to represent the type of data such as Number, String, Boolean, Array
– for special tasks: Date, Math, RegExp (regular expressions)

• Standard objects provided by the web browser environment
– to represent the objects associated with the web browser: navigator

(for browser), window (for the window in which the HTML document is
displayed), history (browsing history of the browser), and location
(current URL of the window).

– HTML DOM objects: the HTML page in a window is internally represented
as a tree of objects, each representing an HTML element including its
attributes. These objects are created by the browser after the HTML
document is parsed. The top level DOM object is document object.

• The library of objects in a given JavaScript running environment, such
Node.js

• The user can also create his or her own objects.
– however in this unit, we will focus on the use of built-in and

standard objects provided by the web browser environment.

Object Creation
• JavaScript objects can be created in two different

ways:
– Created using an object literal, such as

var myDog = {

name: “alex”,

breed: ”Labrador”,

color: “black”,

bark: function(){ console.log(“Woof woof woof!”) }

};

Each object consists of a list of unordered properties, and each property
consists of a name:value pair.

– Created using new and an object constructor, such as
var today = new Date();

47

Accessing Objects
• Properties and methods of an object are accessed

via its object reference using the dot notation:
Object_ref.property;

Object_ref.method(…);

• Examples:
var dogColor = myDog.color;

myDog.bark();

var year = today.getFullyear();

var hour = today.getHours();
48

An Example of Object
Creation using Literals

var student = {

name: "John",

student_no: 123456,

major: "computer science",

info: function(){
return this.name + " " + this.student_no

+ " " + this.major;

}

}

console.log("student name is " + student.name);

console.log(student.info());

49

Object Creation With
Constructors

• The new expression, which includes a call to the
constructor of an existing object, is used to create an object
var today = new Date();

var list = new Array (1, 2, “three”, 4);

var obj = new Object();

• The constructor will create a new object (eg, set aside
memory for it) and initialise it with the relevant properties
and methods depending on which object constructor was
used. Finally the constructor returns the memory address
of the new object. This memory address is known as the
new object’s “object reference”.

50

What Are in the
New Object?

• The initial properties and methods in a new object
depends on the constructor used to create the
object.
– For example, the object today would contain the current

date and time and methods such as getDate() and
getHours().

– while the object obj is largely empty, as it is from
Object.

• The number of properties of an object may vary
dynamically in JavaScript:
– You can add properties to, and delete properties from, an

object at run-time.
51

Object Modification
• Assuming the following new object car:

var car = { make: “Holden”, model: ”Commodore” };

• Alternatively you can create the same object with the
Object constructor and then add two properties “make”
and “model” to the object
var car = new Object();

car.make = “Holden";

car.model = “Commodore";

• The delete operator can be used to delete a property
from an object
delete car.model;

52

53

Built-in Object Constructors
• JavaScript core consists of a number of builtin

object constructors including:
• Object
• Date

• Array

• String

• RegExp

• Math

• JSON

• Apart from Object, we will also cover Date, Array,
String objects in this topic. Later topics will cover
more.

54

The Date Objects
• You often need to create or manipulate dates.

JavaScript’s built-in object Date returns the
current date and time.

Var today = new Date();

• In the above example, the reserved word new
creates a new object, while Date() is a
constructor for the Date objects which, together
with new creates a new Date object. The
constructor returns the object reference of the
new object and the object reference is stored in
variable today.

55

Date Object Methods
• Methods that are associated with the Date

object can be used to manipulate the date
and/or parts of it. Some of the common ones
are shown in the next slides.

• These methods can be invoked using the object
reference and the dot symbol, eg:
var year = today.getFullYear();

5
6

Some Date Methods
Method Description

getDate() Returns a number from 1 to 31, representing the
date of the month.

getDay() Returns a number from 0 (Sunday) to 6
(Saturday) representing the day of the week.

getFullYear() Returns the year as a four digit number.

getHours() Returns a number from 0 to 23 representing
hours since midnight.

getMinutes() Returns a number from 0 to 59 representing the
minutes for the time.

5
7 Some Date Methods

Method Description

setDate(val) Sets the day of the month to val.
setHours(h,m,s,ms) Sets the hour; the first argument is the only

one required.
setMonth(val) Sets the month to val.

toString() Returns a string representation of the date
and time specific to the locale of the
computer.

Example:

var today = new Date();
var today_str = today.toString();
console.log(“Today is “ + today_str);

58

Arrays in JavaScript
• Array is a special object in JavaScript.
• An array is a list of variables that are usually

related in some way and can be referenced
using an index. In JavaScript an array is an
object, so to create an array we use the reserved
word new:

arrayName = new Array(arrayLength);

Eg:
var list = new Array (10);

The variable list points to an array of length 10, but no
array element is added to the array yet.

59

Arrays in JavaScript
• You can also assign a list of array elements when

creating a new array, eg:
var my_list = new Array(1, 2, “three”, “four”);

or simply,
var my_list = [1, 2, “three”, “four”];

The variable my_list is an array of 4 elements:
my_list [0]: 1
my_list [1]: 2
my_list [2]: “three”
my_list [3]: “four”

60

Arrays in JavaScript
• An array can have elements of different kinds

and can be grown by adding elements past the
arraylength.

• Example:
TestArray = new Array(3);
TestArray[0] = "cat";

TestArray[2] = 1234;

TestArray[3] = "a new element";

• Note that in the above array, the second element
is not defined. The last element has gone past
the original definition.

61

Properties of Arrays
• The most important property of an array is the

one we have already seen, the length, that
contains the length of the array. You will see it
commonly used in loops moving through an
array:

for (var i=0; i<TestArray.length; i++) {
.

}

62

Array Methods
• pop(): removes an element from the end of the

array, and returns the removed element.

• push(): adds one or more elements to the end
of the array.

• shift(): removes the first element from the
array and returns the removed element.

• unshift(): adds one or more elements to the
beginning of the array.

• splice(): adds and/or removes a portion of the
array.

63

Array Methods
• sort(): sorts the elements of the array

alphabetically.

• reverse(): reverses the order of elements in
the array.

• slice(): returns a portion of the array, called a
subarray.

• concat(): combines the elements of two arrays
into a third.

64

The String Objects
A String object has many mmethods (functions)
that allow you to manipulate strings. We will only
consider some of these here.

• string.charAt(index) – returns the character
which is at position index in the string. One thing to
remember is that the first character in a string is
considered to be in position 0 (zero); not 1. So, for
example:

var mystring = "Have a nice day";

var mychar;
mychar = mystring.charAt(1); // will return "a"

mychar = mystring.charAt(9); // will return "c"

65

String Methods
• stringa.indexOf(stringb) – allows you

to find the index of the first occurrance of
stringb within stringa. If the string is not
found, then the value -1 is returned. So, for
example:
var mystring = "Have a nice day";

var myIndex;

myIndex = mystring.IndexOf("a"); // will return 1
myIndex = mystring.IndexOf("b"); // will return -1

66

String Methods
• string.substring(start, end) – allows

you to capture a string within a string. The end
value is the position AFTER the one to be
returned. If the end value is omitted, then the
length of the string is assumed. So, for example:
var mystring = "Have a nice day";

var mychars;

mychars = mystring.substring(0, 4);// will return "Have"

mychars = mystring.substring(12); // will return "day"

String Methods
Method Parameters Result

charAt A number Returns the character in the String
object that is at the specified
position

indexOf One-character string Returns the position in the String
object of the parameter

substring Two numbers Returns the substring of the String
object from the first parameter
position to the second

toLowerCase None Converts any uppercase letters in
the string to lowercase

toUpperCase None Converts any lowercase letters in
the string to uppercase

67

68

Regular Expressions
• Regular expressions are sets of rules that define a set

of possible matching strings. Regular expressions have
been used in other languages for a long time, and have
also been introduced to JavaScript.

• Regular expressions in JavaScript are based on the
syntax used in Perl, but there are some small
differences.

• JavaScript provides many methods in String object to
handle regular expressions.

• JavaScript also has an object RegExp that provides
more powerful facilities for handling regular
expressions.

69

Regular Expressions
• Regular expressions can be used in JavaScript

and PHP (which will be covered in a later topic),
so we will spend some time looking at the syntax
in JavaScript first.

• A regular expression is an object defined with
the following syntax:

/pattern/modifier
The modifier can be one of “i” (ignore case), “g” (global
match), and “m” (multiline matching) .
For example:

var re = /topic\d+/i;

70

A Simple Example
• The match method from String object returns

an array of substrings that matches the pattern, or
null if there is no match.

• Eg:

var MaryString = "Mary had a little lamb";
var MatchingString =
MaryString.match(/Mary/);
console.log(“Matching string: “

+ MatchingString);

71

Case-Insensitive Matching
• The letter i following the string pattern means

ignoring the case during pattern matching. Eg:
var MaryString = "Mary had a little lamb";
var re = /LAMB/i;

if (MaryString.match(re)) {
console.log(”with lamb");

}
else {

console.log(”no lamb");
}

String Search
• The search method from String object returns the index of

matching string or -1 if there is no match.

• The output of the following code is as follows: 'bits' appears in
position 3.

var str = "Rabbits are furry";

var position = str.search(/bits/);

if (position >= 0)

console.log("'bits' appears in position", position);

else
console.log("'bits' does not appear in str");

73

Metacharacters
• Some characters have special meaning to JavaScript

regular expressions, so they must be used in character
matching in a special way - this is called escaping. In
JavaScript you place a backward slash in front of the
special character in a regular expression. These
metacharacters are:

\ | ^ $. ? * + { } [] ()

• Example:
var metaString="Does this string contains metacharacters?";
var re = /\?/; // escape the special meaning of ? in RE
if (metaString.match(re))

console.log("Your string contains a metacharacter");

7
4 Character Classes

Symbol Function Example

[xyz] Match any one character
enclosed in the character set .

/[AN]BC/ matches ABC
and NBC but not BBC.

[a-z] Match any character between a
and z; other ranges are
possible.

/[A-C]BC/ matches ABC
and BBC but not NBC.

. A wildcard; matches a single
character except a newline.

/b.t/ matches bat, bit,
but, bet, …

\d Match any single digit.
Equivalent to [0-9]

\s Matches any single space
character.

\w Match any single word (non-
punctuation or non-whitespace)
character.

7
5 Position Matching

Symbol Function Example

^ Only matches the beginning of a
string.

^P matches first P in
“Paul Patterson,
President.”

$ Only matches the ending of a
string.

t$ matches the last t in
“A cat in the hat”

\b Matches any word boundary (test
characters must exist at the
beginning or end of a word within
the string).

ly\b matches ly in
“JavaScript is really
cool.”

\B Matches any non word boundary \Bor matches the or in
“normal” but not the one
in “origami”

76

Alternatives and Grouping
• The | can be used like an “or”, so that several

patterns can be tested. Characters can be
placed inside round brackets () when testing for
several alternatives:

• Example:
var metaString = "Does this string contains

metacharacters?";
var re = /(ab)|(ac)|(ad)/;
if (metaString.match(re)) {

console.log("Your string contains ab or ac or ad")
}

7
7 Repetition

Symbol Function Example

{x} Match exactly x occurrences of a
regular expression.

\d{5} matches 5 digits.

{x,} Match x or more occurrences of
a regular expression.

\s{2,} matches 2 or
more spaces.

{x,y} Matches x to y (inclusive) number
of occurrences.

\d{2,3} matches at
least two, but no more
than three digits.

? Matches zero or one occurrence. Same as {0,1}.

* Matches zero or more
occurrences.

Same as {0,}.

+ Matches one or more
occurrences.

Same as {1,}

7
8 Additional RegExp Methods

in String Object
Method Description

replace(regular_ex
pression,
replacement_text)

Returns a copy of the string with text
replaced.

split(regular_expr
ession)

Returns the array of strings that result
when a string is separated into
substrings. Splitting is done based on
the occurrences of the regular
expression matches.

search(regular_exp
ression)

Returns the position of the first
substring match in a regular
expression search.

79

Some Examples

/^-?\d\d*$/

A valid integer in a line

Beginning
of string

Optional
minus
sign

A digit
Zero or
more
digits

End of
the

string

80

Some Examples
function RemoveCommas(str) {

// define a regular expression;
// note the use of global
// so that all commas are removed
var re = /,/g;

//replace all commas with a space
return str.replace(re,’’);

}

Readings
• Textbook:

– Sebesta: Chapter 4

• W3Schools:
– http://www.w3schools.com/js/default.asp

• Kindle book:
– Mark Myers: A Smart Way to Learn JavaScript

81

http://www.w3schools.com/js/default.asp

